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Abstract 

 

Rotational machine fault detection and conditional monitoring can prevent harmful environments 

and ensure reliable operations of equipment. In order to achieve fault detection and conditional 

monitoring, many signal processing techniques, such as short-time Fourier transform (SFFT), 

wavelet transform and empirical mode decomposition (EMD), have been developed. Among 

these methods, the EMD process has been a very promising and effective technique. This paper 

proposes an EMD-based algorithm that consists of two stages. The first stage processes 

vibrational signals using three orthogonal channel recordings to obtain a principal component 

signal. At the second stage, the ensemble empirical mode decomposition (EEMD) is applied to 

the principal component signal to obtain the intrinsic mode functions (IMF). The Hilbert-Huang 

transform spectrum based on IMFs for various operating load conditions is examined for fault 

diagnosis. The proposed algorithm alleviates the computational load by using the principal 

component signal instead of three individual x-, y-, and z-channel recordings. The experimental 

validations of the proposed algorithm are demonstrated using vibration signals acquired from a 

three-phase electric induction motor for healthy and fault conditions under various loads.  

  

Introduction 

 

For past decades, time-frequency and time-scale analysis methods such as short-time Fourier 

transform (STFT) and wavelet transform [1-3] have been investigated for analysis of non-

stationary or nonlinear signals with applications in rotational machine fault detection and 

health monitoring to prevent harmful environments and ensure reliable operations of 

equipment. Although these techniques are successfully applied to machine health diagnosis 
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and fault detection, the results depend on the selection of window type or the use of a base 

wavelet. Recently, the Hilbert-Huang transform (HHT) [4,5] has been proposed to 

decompose a signal into a set of intrinsic mode functions (IMF) via the empirical 

decomposition (EMD) process [6-10]. The EMD is an adaptive approach and is effective to 

decompose the non-stationary or nonlinear signals (see details below). However, the EMD 

process suffers from a problem of mode mixing due to signal intermittency [11,12]. The 

problem may cause the decomposed results vague and inappropriately interpreted. To 

eliminate the mode mixing problem, the ensemble empirical mode composition (EEMD) 

algorithm [11, 12] has been proposed. This method essentially processes the original signal 

with an added white noise sequence into a set of IMFs using the standard EMD repetitively. 

The ensemble mean of the corresponding IMFs, which are obtained from the standard EMD, 

is used as the final EEMD decomposed IMF (see details in below). Although the EEMD is 

effective for removing the mixing mode problem, the computational load is huge due to the 

ensemble process. Specially, when applying multi-channel signals such as signals from a 

sensor that provides three-orthogonal channel information, processing each channel data 

sequence via the EEMD process requires even more computations and hinders practical 

applications. 

 

This paper first describes the principles of the standard EMD, Hilbert-Huang transform, and 

EEMD. To reduce the computational load by using the EEMD for multichannel signals, a 

principal component empirical decomposition (PCEEMD) algorithm is proposed. The 

PCEEMD process consists of two stages: the first stage constructs the principal component 

signal based on the data sensed from three-orthogonal channels, and the second stage applies 

the standard EEMD process to the principal component signal. After obtaining the IMFs in 

the principal direction, they can be directly employed for rotational machine fault detection 

by the HHT spectrum, or, as an option, the obtained IMFs can be projected into three 

orthogonal axes. 

 

Algorithm Development 

 

Principles of EMD, HT Spectrum, and EEMD 

 

The EMD is an adaptive decomposition approach which is applied to decompose nonlinear 

and non-stationary signals. The EMD process extracts a set of  IMFs from the original signal. 

Each IMF must meet two conditions [4]: the number of extrama and the number of zero 

crossings must be either equal or differ at most by one; the mean value of the envelope 

defined by the local maxima and the envelope defined by the local minima at any point must 

be zero. The steps of the EMD algorithm [4-6] to decompose a signal ( )x t  is described 

below: 

 

Step 1: Initialize 0 ( ) ( )r t x t=  and set 0i =  

Step 2: Extract the ith IMF with the following sifting procedure: 

a. Initialize ( 1) 1( ) ( )
i k i

h t r t− −=  with 1k =  
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b. Find the local maxima and local minima of signal ( 1) ( )
i k

h t−  

c. Interpolate the local maxima and local minima by cubic splines to construct the 

upper and     lower envelopes of ( 1) ( )
i k

h t−  

d. Calculate the mean ( 1) ( )
i k

m t−  of the upper and lower envelopes of ( 1) ( )
i k

h t−  

e. Calculate ( 1) ( 1)( ) ( ) ( )
ik i k i k

h t h t m t− −= −   

f.  If the stop criterion for the iteration k  given below is satisfied 
2

( 1)

2
0 ( 1)

[ ( ) ( )]

( )

T
i k ik

t i k

h t h t
SD

h t

−

= −

−
≤∑                     (1) 

where SD is a predefined value and usually set to 0.1, that is, if equation 1 is 

satisfied, ( ) ( )
i k

h t  is an IMF and then set ( )( ) ( )
i i k

c t h t= ; else set 1k k= +  and then 

go to step (b). 

Step 3: Calculate sequence: 1( ) ( ) ( )
i i i

r t r t c t+ = −  

Step 4: If 1( )
i

r t+  has at least 2 extrema then set 1i i= +  and go to step 2; else the 

decomposition is completed and 1( )
i

r t+  is the residual signal. The decomposition 

results are listed below: 

1 1( ) ( ) ( )x t c t r t− =  

1 2 2( ) ( ) ( )r t c t r t− =  

 ….. 

1( ) ( ) ( )
N N N

r t c t r t− − =  

By summing them, it follows that 

1

( ) ( ) ( )
N

i N

i

x t c t r t
=

= +∑                                                 (2) 

It can be seen that signal ( )x t  is decomposed into N  intrinsic mode functions and a residue 

signal ( )
N

r t . Once signal ( )x t  is decomposed to N  IMFs, the Hilbert transform (HT) [4,5] 

can be applied to each of IMF to obtain instantaneous frequency, that is, 

( )1
( ) i

i

c t
y t d

t
τ

π τ

∞

−∞
=

−∫              (3) 

The analytical signal ( )
i

z t , which is constructed using both IMF ( )
i

c t  and its HT ( )
i

y t , can be 

expressed as 

( ) ( ) ( )
i i i

z t c t jy t= +  (4) 

 

Then the instantaneous envelope of the analytic signal for the ith IMF is found to be 
2 2( ) ( ) ( )i i ia t c t y t= +                (5) 

 

and the corresponding phase angle can be determined by 

1 ( )
( ) tan

( )

i
i

i

y t
t

c t
θ −  

=  
 

               (6) 
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Notice that instantaneous envelope ( )
i

a t  indicates the signal energy variation while the phase 

angle ( )
i

tθ  is the instantaneous phase. The instantaneous frequency for the ith IMF can be 

found by taking derivative of the phase angle, that is, 

( )
( ) i

i

d t
t

dt

θ
ω =                          (7) 

 

The Hilbert transform based on the IMF is referred to Hilbert-Huang transform (HHT); and 

the time-frequency plot of HHT is referred to HHT spectrum. Although the EMD 

demonstrates the effectiveness in decomposing nonlinear and non-stationary signals, the 

method has a problem of mode mixing; that is, a single IMF may contain oscillations of 

dramatically disparate scales, or a component of a similar scale resides in different IMFs due 

to signal intermittency. The intermittence could cause serious signal aliasing in time-

frequency distribution as well as make the physical meaning of the individual IMF unclear. 

 

The noise-assisted data analysis [11, 12] by adding noise to the original signal is proposed. 

This method is referred to the ensemble empirical mode decomposition (EEMD). The 

principle of the EEMD can simply be described as follows. The EEMD adds white noise to 

the original signal before applying the EMD. Since the added white noise in background 

populates the whole time-frequency space uniformly, the signal components at different 

scales can automatically be projected onto proper scales of the references established by the 

while noise in the background. Although each trail may produce noisy results, the noise in the 

results can be cancelled out by using the ensemble mean with a significant number of trials. 

Hence, each IMF obtained using EEMD is the ensemble mean of trials. The EEMD is then 

summarized below: 

 

Step 1: Add a white noise sequence to the original signal (the standard deviation of noise 

=10~20% of the standard deviation of the original signal). 

Step 2: Decompose the signal with added white noise sequence into IMFs [ , ( )
i m

c t at mth trial] 

using EMD. 

Step 3: Repeat Steps 1-2 with different white noise sequences for M  times 

Step 4: Calculate the ensemble mean for each IMF 

,

1

1
( ) ( )

M

i i m

m

c t c t
M =

= ∑ , 1,2, ,i N= L    (8) 

 

Obviously, the EEMD algorithm has a large computational load. 

 

Development of Principal Component EEMD 

 

In many applications, a sensor [13] acquiring signals may contain multi-components. Figure 

1 depicts an accelerometer (single station) consisting of three orthogonal x-, y-, and z- 

channels. Channels x and y are designated to record accelerations in x and y directions, 

respectively. Channel z measures vertical acceleration. An incoming signal has angles of α , 
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β , and γ   relative to x-, y-, and z-axes, respectively. Applying the EEMD algorithm for each 

channel requires a significant amount of computational load. 

 

 
Figure 1. A sensor with x-, y-, z- channel recodings 

 

Assuming ( )s n  is the incoming signal with a direction of [ ]cos cos cosα β γ  while ( )x n , 

( )y n , and ( )z n  are the sensor recordings, the incoming signal can be estimated by a linear 

combination 

[ ]1 2 3

( )

( ) ( )

( )

T

x n

s n U X u u u y n

z n

 
 = =  
  

 (9) 

where [ ]1 2 3

T
U u u u=  and [ ]( ) ( ) ( )T

X x n y n z n= . 

   

Again, the sensor signals are assumed to be zero mean process, that is, 

( )
( ( )) 0

( ( )) 0

( ( )) 0

E x n

E X E y n

E z n

   
   = =   
      

 (10) 

then 

( ) ( )( ) 0TE s n E U X= =               (11) 

where ( )E  is the expectation operator. Note that the power of the incoming signal can be 

expressed as  

( ) ( )2 2 ( ) T T T

s
E s n U E XX U U CUσ = = =             (12) 

where C  is a 3x3 covariance matrix defined below: 

( )

2

2

2

x xy xz

T

xy y yz

xz yz z

C E XX

σ σ σ

σ σ σ

σ σ σ

 
 

= =  
 
 

             (13) 

with ( )2 2 ( )
x

E x nσ = , ( )2 2 ( )
y

E y nσ = , ( )2 2 ( )
z

E z nσ = , ( )( ) ( )xy E x n y nσ = , 

( )( ) ( )xz E x n z nσ = , and ( )( ) ( )yz E y n z nσ = . Based on Figure 1, it can be seen that 
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( ) cos

( ) cos ( )

( ) cos

x n

X y n s n

z n

α

β

γ

   
   = =   
      

                                                       (14) 

If  [ ]cos cos cosT
U α β γ=  is found, the estimated incoming signal becomes 

( )2 2 2( ) cos cos cos ( ) 1 ( )Ts n U X s n s nα β γ= = + + = ⋅            (15) 

Equation 15 indicates that [ ]1 2 3

T
U u u u=  should be a unitary vector, that is, 1T

U U =  

and the best unitary vector is the one to maximize the power of the incoming signal with the 

following constraint: 
2

,
max

s
U λ

σ                 (16) 

2 ( 1)T L T

s
U CU U Uσ λ= − −               (17) 

Taking derivative of 2

s
σ  to U  and setting the result to zero, it follows that 

( ) 0LC I Uλ− =                (18) 

 

Taking derivative of 2

s
σ  to the Lagrange multiplier Lλ  and setting the result to zero, the 

unitary vector constraint 1T
U U =   is yielded. It is clear that the Lagrange multiplier Lλ  is 

essentially an eigenvalue of covariance matrix C , that is, 1 2 3, ,L C C Cλ λ λ λ∈  . To ensure 2

s
σ  to 

be the maximum value, taking second-order derivative of 2

s
σ  to U  leads to the following 

matrix: 
2 2

2

( )L
Ls C I U

C I H
U U

σ λ
λ

∂ ∂ −
= = − =

∂ ∂
 (19) 

and H  must be semi-negative definite. Let Hλ  and H
U an eigenvalue and an eigenvector of 

matrix H . Equation 19) becomes 

 

              ( ) [ ( ) ] 0H L H

H H
H I U C I Uλ λ λ− = − + =              (20) 

 

Equation 20 indicates that L H

i
λ λ+  is an eigenvalue of matrix C, that is, 

1,2,3C L H

i i
iλ λ λ= + =                 (21) 

and 
H

U U= . The eigenvalue of matrix H can be determined as 

, 1, 2,3H C L

i i
iλ λ λ= − =                 (22) 

To ensure 0H

i
λ ≤  (H must be semi-negative definite), max

L Cλ λ= . The corresponding unitary 

vector U  for max

Cλ is the optimal vector which represents the signal principal direction. With 

the obtained optimal unitary vector of U , the principal component signal is achieved as 

( ) Ts n U X= . Therefore, the proposed principal component ensemble empirical mode 

decomposition (PCEEMD) algorithm is summarized below: 

 

Step 1: Compute covariance matrix C . 
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Step 2: Determine the maximum eigenvalue max

Cλ  and its corresponding unitary eigenvector 

U . 

Step 3: Compute the principal component signal ( ) Ts n U X= . 

Step 4: Apply the EEMD  algorithm to the principal component signal ( ) Ts n U X=  to obtain 

IMFs. 

Step 5: (optional) Project IMFs to x-, y-, and z-axes, respectively, that is, 1i i
IMFx u IMF= × , 

2i i
IMFy u IMF= × , 3i i

IMFz u IMF= ×  

 

Experiments and Validations 

 

To validate the proposed PCEEMD method for non-stationary or nonlinear signal analysis, 

vibrational signals from the accelerometer based on three-orthogonal channels were acquired 

from the three-phase induction motor with an adjustable load (Figure 2). As shown in Figure 

2, an accelerometer was attached on the three-phase induction motor. The accelerations 

measured in x-, y-, z- axes were obtained via LabView data acquisition platform at a 

sampling rate of 10 kHz with a 16-bit data resolution. The acquired data sequence from each 

channel was preprocessed to remove its mean (DC component). The adjustable load via the 

belt was coupled to the motor via a rubber coupler. A fault in the rubber coupler was 

introduced. Figure 3 shows healthy and fault coupler conditions. The coupler in fault 

condition has inner and outer worn-out teeth on the driving side. The experiments were 

carried out with no load (0% load), medium load (50% load), and full load (100% load) with 

the motor running at 1,800 rpm. The speed of the shaft was monitored by an optical encoder. 

 

 

 
 

Figure 2. Experimental setup 
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Figure 3. Coupler healthy condition and fault condition 

 

Notice that for the healthy condition validation experiment, the healthy coupler was installed 

while for the fault condition validation, the healthy coupler was simply replaced by the fault 

coupler. It is also assumed that the condition for the healthy coupler or the fault coupler stays 

the same during testing. The transition condition between the healthy coupler and fault 

coupler is not considered in this paper and will be investigated in the future. 

 

Figure 4 shows x-y-z channel vibration signals measured from the sensor as well as the 

principal component signal produced by the PCEEMD algorithm for the healthy coupler and 

fault coupler under the 50% load.  
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Figure 4. Acceleration measurements and generated principal componenet signal ( )s n  

(left: healthy condition; right: fault condition) 

 

The second stage applied the EEMD algorithm to the principal component signals. The 

principal component signal was added with a white noise sequence with a Gaussian 

distribution using 20% of the standard deviation of the original signal. The ensemble mean of 

each IMF is calculated using 50 trials. The achieved corresponding IMFs for both healthy and 

fault conditions are given in Figure 5 for comparisons. It can be seen that for both cases, there 

are no significant evidences of mixing modes. The shaft frequency of 30 rev/s can be seen in 

IMF6 for both cases. For the healthy condition, there are 9 IMFs but 10 IMFs for the fault 
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Figure 5. Decomposed IMFs from two coupler conditions using the PCEEMD algorithm 

(left: healthy condition; right: fault condition) 

 

The corresponding HHT spectra for healthy and fault conditions are depicted in Figure 6. As 

shown Figure 6a, the dominant frequency component comes from the shaft rotation, that is, 

30 Hz (rev/sec); and for the fault condition as shown in Figure 6b, besides the dominant 

frequency component of the shaft rotation (30 Hz), there appear the fourth harmonic 

component, irregular pulses and high frequency noise. As an additional validation, the 

discrete-Fourier transform spectra were calculated and displayed in Figure 7. Clearly, the 

shaft frequency component is dominant for both healthy and fault conditions. Similarly, the 

fourth harmonic frequency component becomes significant in the fault condition. However, 

the DFT spectrum does not show time-scale information. 
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Figure 6. The HHT spectra from two coupler conditions using the PCEEMD algorithm 

(left: Healthy condition; right: fault condition) 
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Figure 7. DFT spectra from two coupler conditions using the PCEEMD algorithm 

(left: healthy condition; right: fault condition) 

 

Additional Results 

 

The validations for the 0% and 100% loads also show the similar results as that of the 50% 

load. The results are consistent and summarized in Table 1. 

 

Table 1. Results from HHT Spectra 
Operation Conditions Dominant 

frequency 

High-order 

harmonics 

Irregular pulses High frequency 

noise 

Healthy, 0% load Significant Not Significant Not Significant Not Significant 

Faulty, 0% load Significant Significant Significant Significant 

Healthy, 50% load Significant Not Significant Not Significant Not Significant 

Faulty, 50% load Significant Significant Significant Significant 

Healthy, 100% load Significant Not Significant Not Significant Not Significant 

Faulty, 100% load Significant Significant Significant Significant 
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Since the EEMD process only applies to the principal component signal, the computational 

load is significantly reduced. Most importantly, since the principal component signal contains 

the sensed vibration signal with its aligned direction so that the obtained IMFs and HHT 

spectra will present most meaningful information for fault detection and conditional 

monitoring. 

 

Conclusion 

 

This paper proposed a principal component ensemble empirical decomposition (PCEEMD) 

algorithm for rotational machine fault detection and conditional monitoring. The algorithm is 

very effective for processing data from a single station sensor with x-, y-, and z- sensing 

components. The PCEEMD consists of two stages. The first stage performs vibrational signal 

enhancement to achieve the principal component signal according to three orthogonal channel 

recordings. With the principal component signal, the EEMD algorithm is applied to obtain the 

IMFs with an advantage of mixing mode elimination. The Hilbert-Huang transform spectra are 

then obtained for rotational machine fault detection and diagnosis. The algorithm significantly 

alleviates the computational load by processing the principal component signal instead of three 

individual channel recordings. The experimental validations of the proposed method are 

demonstrated using vibration data acquired from the three-phase electric motor for healthy and 

fault conditions under various loads.  
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